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a b s t r a c t 

We present a novel method to map the functional organization of the human auditory cortex noninvasively 

using magnetoencephalography (MEG). More specifically, this method estimates via reverse correlation the spec- 

trotemporal receptive fields (STRF) in response to a temporally dense pure tone stimulus, from which important 

spectrotemporal characteristics of neuronal processing can be extracted and mapped back onto the cortex surface. 

We show that several neuronal populations can be found examining the spectrotemporal characteristics of their 

STRFs, and demonstrate how these can be used to generate tonotopic gradient maps. In doing so, we show that 

the spatial resolution of MEG is sufficient to reliably extract important information about the spatial organization 

of the auditory cortex, while enabling the analysis of complex temporal dynamics of auditory processing such as 

best temporal modulation rate and response latency given its excellent temporal resolution. Furthermore, because 

spectrotemporally dense auditory stimuli can be used with MEG, the time required to acquire the necessary data 

to generate tonotopic maps is significantly less for MEG than for other neuroimaging tools that acquire BOLD-like 

signals. 
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. Introduction 

An important goal of auditory neurophysiology is to model the func-

ional organization of the human auditory cortex (AC). This involves

eveloping an understanding of auditory processing along both spec-

ral and temporal dimensions, and relating these features to the spatial

opographical organization of the AC. 

Frequently, the topographical organization of the human AC has

een studied noninvasively using functional magnetic resonance imag-

ng (fMRI) in terms of tonotopy, or best frequency maps, which has

een found to be a key organizational feature ( Da Costa et al., 2011 ;

ormisano et al., 2003 ; Humphries et al., 2010 ; Langers and van

ijk, 2012 ; Talavage and Edmister, 2004 ; Woods et al., 2010 ). Although

etails such as the orientation of the tonotopic gradient are still debated,

n anterior to posterior high-low-high best frequency organization cen-

ered on Heschl’s gyrus (HG) is found and agreed upon in most human

MRI studies ( Gardumi et al., 2017 ), and is consistent whether pure tones

r natural sounds are used ( Moerel et al., 2012 ). Coupled with the spa-

ial organization of other neuronal response characteristics such as the

roadness of frequency tuning, and paired with findings from cyto- and
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yeloarchitectural studies, the AC has been further divided by fMRI into

ubfields with unique processing properties ( Moerel et al., 2014 ). 

However, the role of temporal processing within the micro-

rganization of the human AC remains unclear from the available fMRI

iterature alone ( Leaver and Rauschecker, 2016 ). Crucial aspects of our

ensory experience, such as speech perception and music enjoyment,

learly rely heavily on precise temporal encoding of auditory informa-

ion ( Abrams et al., 2011 ). Invasive electrophysiological recordings in

everal animal species have shown the importance of temporal features

n understanding the functionality of AC subfields ( Linden et al., 2003 ;

agel and Doupe, 2008 ). Specific areas have been reported to produce

hasic or a tonic response to tones ( Joachimsthaler et al., 2014 ). Ad-

itionally, auditory ERPs and single-unit recordings have shown differ-

nt time courses as a function of stimuli durations ( Beukes et al., 2009 ;

lain et al., 1997 ). Moreover, studying the temporal domain of audi-

ory processing is necessary to gain a complete understanding of audi-

ory plasticity ( Schreiner and Polley, 2014 ; Carlin and Elhilali, 2015 ).

or example, auditory training using temporal discrimination tasks can

ead to improvements in the processing of temporal features that do

ot result in improvements in spectral processing ( van Wassenhove and

agarajan, 2007 ), reinforcing the importance of studying both dimen-
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ions. Similarly, studying temporal dynamics can yield insights into age-

elated changes in auditory processing ( de Villers-Sidani et al., 2010 ;

oss et al., 2020 ; Dobri and Ross, 2021 ). 

Unfortunately, while fMRI boasts an excellent spatial resolution to

nswer questions pertaining to the spatial organization of the AC, it

annot provide sufficient temporal resolution to adequately study tem-

oral dynamics and short-latency events. The hemodynamic response

o neuronal activity measured by fMRI occurs on the order of seconds

 Aguirre et al., 1998 ), which precludes precise characterization of neu-

onal activity occurring on the order of milliseconds. Furthermore, be-

ause of the relatively long acquisition time, stimuli sets are typically

mall and offer less flexibility than one would ideally want to study the

esponse to complex sounds. Studying auditory processing in fMRI has

lso been limited by loud operating noise, even though workarounds

ave been developed ( Cha et al., 2016 ). 

MEG is an attractive alternative modality for in vivo electrophysi-

logical recording of neuronal activity in the AC. It not only provides

uperior temporal resolution on the order of milliseconds ( Regan, 1989 ),

ut also provides a completely silent acquisition environment. An impor-

ant barrier preventing its widespread use has been related to concerns

egarding its ability to spatially resolve the millimetric spatial organi-

ation of the AC ( Langers and van Dijk, 2012 ; Moerel et al., 2014 ), in

articular its tonotopic organization. This concern is offset by recent

uccesses in capturing the retinotopic organization of the visual cortex

sing MEG at a spatial resolution of 7 mm in smooth cortical regions and

f less than 1 mm near curved gyri ( Nasiotis et al., 2017 ). Furthermore,

he MEG spatial resolution of the auditory cortex, given its dipole ori-

ntation, has been known to be under 1 cm ( Pantev et al., 1990 ). Addi-

ionally, similarly fine cortical resolutions were obtained in other ROIs

 Huang et al., 2016 ; Huang et al., 2006 ) and a human skull phantom

 Leahy et al., 1998 ). A sufficiently precise resolution was demonstrated

or preoperative source localization ( Niranjan et al., 2013 ). Moreover,

arly efforts at identifying a basic tonotopic gradient using MEG have

een successful in some respects: dipole depth beneath the scalp has

onsistently been found to correlate with stimulus frequency, and ori-

ntation of the gradient has been shown to vary with gyral morphology

 Romani et al., 1982 ; Pantev et al., 1988 ; Kuriki and Murase, 1989 ;

uotilainen et al., 1995 ; Verkindt et al., 1995 ). Other studies have also

dentified a posterior to anterior gradient, lower frequencies being rep-

esented more posteriorly, with the possibility of there being multiple

onotopic gradients ( Pantev et al., 1995 ; Weisz et al., 2004 ). Finally, a

ecent MEG study using speech sounds was able to identify a tonotopic

radient similar to that obtained in fMRI ( Su et al., 2014 ). 

Encouragingly, relatively simple study design tweaks could poten-

ially yield improvements in the spatial resolution of MEG, notably

hrough the use of higher stimulus density (ie. a higher stimulus presen-

ation rate). There is evidence from research with owl monkeys point-

ng to an inverse relationship between stimulus density and the tuning

idth of neurons in the AC, as shown by the smaller size of their recep-

ive fields with such stimuli ( Blake and Merzenich, 2002 ). This could be

ue to increased peri ‑neuronal inhibition when stimuli are presented at

 faster rate, increasing the spectrotemporal specificity of each neuron,

nd therefore improving the spatial resolvability of neuronal subpopu-

ations. Using a temporally dense stimulus could therefore improve the

patial resolution of MEG with respect to tonotopic organization. 

Here, we describe a novel method to map the functional organiza-

ion of the AC using MEG. Specifically, we take advantage of the MEG’s

igh temporal resolution to extract the spectral and temporal character-

stics of sound processing for each neuronal source by computing their

pectrotemporal receptive field (STRF), and demonstrate how the char-

cteristics of STRFs can then be extracted and mapped onto the cor-

ical surface to study organizational features such as tonotopy. STRFs

ave indeed been commonly used to describe the dynamics of neuronal

ctivity in response to auditory stimuli (see for e.g.: Calabrese et al.,

011 ; Kowalski et al., 1996 ; Linden et al., 2003 ; Sen et al., 2001 ;

oolley et al., 2006 ). They represent the spectral and temporal patterns
2 
f auditory stimuli that elicit the maximal response from a neuron. To

stimate STRFs, several methods have been used for varying stimulus

ypes ( Theunissen et al., 2000 ), but the foundational technique revolves

round reverse correlation and involves averaging the stimulus content

receding neuronal spikes ( de Boer and Kuyper, 1968 ). Doing so results

n a spike-triggered average that can reliably estimate the STRF when

sing a stimulus that is uncorrelated in the spectral and temporal di-

ensions, as is typical for stimuli used for mapping tonotopy. 

We show here that spectrotemporally dense auditory stimuli com-

osed of isointensity pure tones (IIPTs) can yield sufficient spatial res-

lution to allow for mapping the tonotopic organization of the AC us-

ng reverse correlation-based STRFs generated from MEG. This method

an therefore be reliably used to investigate the spatial organization of

he AC, with the added benefit of MEG’s excellent temporal resolution

o study short-latency-dependent events and complex spectrotemporal

haracteristics, permitting an in-depth non-invasive functional study of

uditory processing in humans. 

. Materials and methods 

.1. Participants 

Ten right-handed participants were recruited into the study (hence-

orth labeled S1 to S10). Three were female and the average age was

3 (range 19–27). All participants reported being free of hearing im-

airment or neurological conditions that could affect brain function,

ncluding mild cognitive impairment, dementia and previous history of

troke. All participants provided written informed consent. This study

as approved by the research ethics board of the Montreal Neurological

nstitute. 

The MEG and anatomical MRI recordings of S3 are freely avail-

ble for download from the OpenNeuro platform at the following link:

ttps://openneuro.org/datasets/ds003082/versions/1.0.0 ( Cote and de

illers-Sidani, 2020 ) 

.2. MEG analysis 

.2.1. Stimuli presentation 

Stimuli were generated by a Sound Blaster X-Fi Titanium HD au-

io card (Creative, Jurong East, Singapore) connected to a pair of E-

-RTONE 3A insert earphones (3 M company, Indianapolis, Indiana).

he earphones were connected to the inducers by a plastic tube of ap-

roximately 1 m in length. The inducers were tucked under a shielded

heathe on the floor. The audio output was compared to the generated

timulus with a sound level meter and an ear-canal adapter. Significant

ttenuation was measured at frequencies higher than 7 kHz, therefore

ll presentations above this value were not included in data analyses. 

The stimulus train was a 10-minute train of 50-ms long gated IIPTs

 Fig. 1 ). Each pure tone had an up and down-ramp of 5 ms. Thirty

wo different frequencies were presented with A-weighted intensities

or the resulting stimulus train to be perceived at a similar intensity

 Fletcher and Munson, 1933 ). More specifically, A-weighting describes

he decibel attenuation necessary for each frequency to be perceived at

he same intensity, because the perceived intensity varies depending on

he frequency of the stimulus. There was an average of 55 pure tones

er frequency, per recording, totalling 1795 pure tones per recording.

his presentation rate and tone duration make the IIPT stimulus a non-

erbal, pure tone-based close analog of the previously used Rapid Serial

uditory Presentation ( Franco et al., 2015 ). Frequencies ranged from

.1 kHz to 25.6 kHz, each separated by a quarter of an octave. The

nter-stimulus interval was randomly generated from a gamma distri-

ution with shape parameter 6 to achieve an average presentation rate

f 3 Hz. Tones could overlap but less than 1% of tones did, and only 2

ones for every 64 were adjacent. 

https://openneuro.org/datasets/ds003082/versions/1.0.0
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Fig. 1. Iso-intensity pure tones stimulus. Sample stimulus spectrogram used to 

obtain STRFs. Frequencies range from 0.1 kHz to 25.6 kHz and each is separated 

by a quarter of an octave. Tones are presented binaurally at an average rate of 

3 Hz for a total of 10 min. Note that the width of the squares in this figure is 

larger than their true duration (50 ms) for the sake of presentation, and more 

tones appear to be overlapping than is truly the case. Refer to Fig. 2 . A for a true 

representation of the duration of each stimulus over a smaller time-window. 
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Participants were instructed to fixate on a visual fixation cross

hroughout the stimulus presentation to reduce eye movement artifacts.

he volume intensity was set to a comfortable hearing level. 

.2.2. MEG acquisition 

Using a six-degrees-of-freedom digitizer (Patriot - Polhemus; Mat-

ab interface RRID: SCR_006752) each participant’s head was digitized.

he head shapes contained about 100 to 200 points distributed across

he scalp, eyebrows and nose to precisely coregister the activity to the

tructural MRI. Three coils were attached to fiducial anatomical loca-

ions on the head (nasion, and left and right pre-auricular points) to

apture head movement inside the MEG. Localization was compared

etween the first and last second of recording to ensure no total move-

ent larger than 1 cm. To record blinks and eye movements, we placed

ipolar electro-oculographic (EOG) leads about 1 cm above and below

ne eye, and about 1 cm lateral of the outer canthi. Electrocardiographic

ECG) activity was recorded with one channel. The electrical reference

as placed at the opposite clavicle. Both EOGs, ECG and the electrical

eference were used for subsequent MEG artifact detection and removal.

EG was recorded using a 275-channel (axial gradiometers) whole-head

EG system (CTF MEG International Services Ltd.). All data were down-

ampled to 2400 Hz. 

.2.3. Structural MRI 

Three-dimensional T1-weighted anatomical MR image volumes cov-

ring the entire brain were acquired on either a 1.5T Siemens Sonata

r 3T Siemens Magnetom Prisma scanner with an 8-channel head coil

repetition time = 27 ms; echo time = 9.20 ms; between 176 and 192

agittally oriented slices with slice thickness of 1 mm; acquisition ma-

rix = 240 × 256; field of view = 256 mm). 

.2.4. MEG data pre-processing and spatial modeling 

MEG data analysis was performed in Matlab (RRID: SCR_001622;

ATLAB and Statistics Toolbox Release 2015b), coupled with the Brain-

torm extension ( Tadel et al., 2011 ), which is documented and freely

vailable for download online under the GNU general public license

RRID: SCR_001761; Tadel, 2019 ). MRI-based cortical reconstruction

nd volumetric segmentation were performed with the FreeSurfer image

nalysis suite (RRID: SCR_001847; Fischl, 2013 ; Dale and Sereno, 1993 ;

ischl et al., 1999 , 2001 ). 
3 
Raw MEG data were pre-processed to remove signal contamination

ue to ocular, cardiac, and muscular artifacts using signal-space pro-

ections ( Tesche et al., 1995 ; Uusitalo and Ilmoniemi, 1997 ). The SSP

rojection was done in accordance with the Brainstorm tutorial’s rec-

mmended procedure ( Tadel, 2019 ), namely starting with the event de-

ection of both eye blinks and heartbeats, followed by the removal of

eartbeat temporally adjacent to eye blinks, calculation of SSP and the

emoval of heartbeat, and finally, calculation of the SSP and the removal

f eye blinks. Each recording was then manually reviewed to discard any

egment still experiencing significant contamination from artifacts. All

ata were downsampled from the recorded 12 kHz to 2400 Hz. 

The forward problem was solved using the overlapping-sphere ap-

roach ( Huang et al., 1999 ), which fits a sphere to the scalp surface.

his simplified modeling method can be used given that the magnetic

elds recorded from the brain are not distorted by the shape of the skull

 Barth et al., 1986 ; Okada et al., 1999 ). wMNE ( Lin et al., 2006 ) was

sed to solve the reverse problem, with sources being constrained to

 one-dimensional perpendicular orientation with respect to the cortex

urface. The MRI-based cortex surface was generated with FreeSurfer

nd contained 330,000 sources ( Dale and Sereno, 1993 ). Otherwise, de-

ault Brainstorm parameters were used in the wMNE modeling (SNR: 3

 Whitening: PCA; Regularize noise covariance: 0.1; Depth weighting:

rder 0.5 / Maximal amount 10). 

To reduce computation time, a lower resolution cortical tessellation

15,000 sources) was used to generate the wMNE source model for the

urpose of regional time-frequency analysis. A high-resolution cortical

essellation (150,000 sources) was used for the remainder of the analysis

o maximize the spatial resolution. 

.2.5. Time-frequency decomposition 

A time-frequency (TF) decomposition was done to select the optimal

and-pass filter to apply to the pre-processed IIPT recording before fur-

her analysis. This analysis was conducted on all participants using a

andomly selected subset consisting of 10% of the presented IITPs. An

natomical ROI was selected for the TF decomposition. Given the puta-

ive primary AC’s location over HG ( Liegeois-Chauvel et al., 1991 ), the

OI was based on the Desikan-Killiany parcellation for HG generated

y FreeSurfer ( Desikan et al., 2006 ), which was then manually enlarged

o cover the surrounding sulcal space on both hemispheres. Using the

5,000 source-model, the analyzed ROI overlying HG covered an aver-

ge of 320.6 sources (SD 23.7) or 49.6 cm 

2 (SD 4.28) per participant.

nly this step, the TF decomposition, used this lower resolution source

odel. Once the bandwidth of interest was identified through this step,

he following step (Estimation of STRFs), was done on the higher reso-

ution, 150,000 source-model. 

The recording was divided into trials of 1 s, from − 500 to 500 ms

ith respect to each IIPT. The DC offset was corrected using the 500 ms

eriod before each IIPT as a baseline. Time-series for each source within

he ROI were extracted for each trial. These time-series were then sub-

ected to a TF-decomposition using Morlet wavelets ( Tallon-Baudry and

ertrand, 1999 ) characterized by a central frequency of 1 Hz and a time

esolution of 1 s. The decomposition was analyzed in 1 Hz-sized fre-

uency bins. These parameters were chosen to maximize the spectral

esolution at the 100 ms response latency (M100), with the goal of us-

ng the M100 response for the remainder of the analysis. The M100

s the earliest detectable event-related response attributable to the AC

hat can be reliably measured with auditory evoked fields ( Pantev et al.,

988 ). Moreover, the M100 response measured by MEG correlates well

patially with the response measured through intracranial recordings

 Godey et al., 2001 ). 

The resulting TF-decompositions were then normalized by z-score

ransformation using a 250 ms-baseline before each IIPT, and an average

cross all ROI sources for each participant was obtained. A conservative

-score threshold of 1 was applied to the average TF-decomposition to

dentify the information-containing frequency bands at the 100 ms la-

ency. Across all participants, the minimum lower cutoff frequency was
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Fig. 2. Generation of STRFs. The process of 

generating an STRF is depicted. (A) 10-second 

sample of the IIPT recording. (B) Z-score trans- 

formed source-space time series. The thresh- 

old for defining a significant activation event is 

shown with a dashed line at a z-score of 1. Sig- 

nificant activation events are shown in red. The 

time points at which three sample pure tones 

were played are shown with arrows above the 

x-axis. (C) Sample STRF, representing the aver- 

age stimuli preceding all significant activation 

events for a given source. This particular STRF 

has a best frequency of 1.3 kHz. (D) Gaussian- 

fitted STRF. 
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e  
 Hz and the maximum upper cutoff frequency was 13 Hz (for the av-

rage TF-decomposition, see Figure S6; for the individual participants’

F-decomposition values, see Table S1). A band-pass filter of 3–13 Hz

ith a stopband attenuation of 60 dB was therefore applied to the pre-

rocessed IIPT recordings for further analysis. 

.2.6. Estimation of STRFs 

The ROI was constructed with the Desikan-Killiany parcellation of

he transverse temporal gyrus (HG) and the part of the superior temporal

yrus that is posterior to HG, given that our focus was on the purported

egion of the primary auditory cortex. STRFs were generated using a

echnique based on the reverse correlation approach for each source

ithin our ROI. Fig. 2 depicts this process. 

The source-space time series was first extracted and converted to

bsolute values to eliminate the effect of the dipole current’s direction-

lity which is not of interest for our application. The absolute value of

he time series was then transformed into a z-score normalized time se-

ies dynamically by recalculating the mean and standard deviation at

ach reasonably long segment of silence. This segment of silence had to

e at least 100 ms long and begin a minimum of 350 ms after the end

f the previous IIPT stimulus to avoid contaminating the baseline with

ate stimulus-related responses. 

From the z-score transformed source-space time-series, local maxima

ere extracted. A significant activation event was defined as a local-

aximum with z-score > 1 (shown in red in Fig. 2 , panel B). Such a

onservative z-score threshold was chosen to avoid missing activation

vents that could be reliably time-locked to a stimulus but that may have

n amplitude that is relatively low. This choice is counterbalanced by

he fact that we weigh activations proportionally to their z-score am-

litude, as explained below. We believe this low z-score threshold in

ombination with a weighting system leads to a more objective selec-

ion of significant activations. In comparison, choosing a higher z-score

hreshold arbitrarily to select a smaller number of activations could be

ighly dependent on the signal-to-noise ratio of a particular experiment,

here different thresholds may lead to different tonotopic maps. 

To calculate STRFs, a method based on reverse correlation analysis

 deCharms et al., 1998 ; de Boer and Kuyper 1968 ) was used. Reverse
4 
orrelation analysis can be used to reliably estimate a neuron’s STRF

hen the stimulus is uncorrelated, or sampled randomly and uniformly

cross the spectrotemporal dimensions as is the case with our IIPT stim-

lus ( Theunissen et al., 2000 ). In summary, the STRF produced through

everse correlation represents the linear estimate of the optimal stimu-

us preceding a neuronal activation event. It is calculated by computing

he average stimulus, in both spectral and temporal dimensions, that

recedes a neuronal activation event. For several authors (see for e.g.

eCharms et al., 1998 ), this neuronal activation event is a spike rate, and

he STRF quantity is therefore a stimulus-triggered spike rate average.

n the method described below, we used a stimulus-triggered activation

mplitude average (the average z-score value of the significant activa-

ion events), which is more in keeping with the metric being recorded

y MEG. The importance of a given activation event on the resulting

TRF is therefore proportional to its amplitude. 

More specifically, this STRF was computed as a matrix 𝑆𝑇 𝑅𝐹 ( 𝑓, 𝑡 ) ,
here 𝑓 represents each 32 presented stimulus frequencies and 𝑡 repre-

ents 4 ms bins within the 500 ms time window preceding a significant

ctivation event. For each significant activation event 𝑖 , the stimulus

ontent in the preceding 500 ms time window was extracted. For each

timulus with frequency 𝑓 and time 𝑡 within this time-window, a value

orresponding to the z-score amplitude of the corresponding significant

ctivation event was defined as 𝑍 𝑖 ( 𝑓, 𝑡 ) . This z-score amplitude was then

orrected for the slight variation in the total number of stimuli presented

or each stimulus frequency by multiplying it by the coefficient ( 𝑓 ) = 

𝑆 

𝑆 𝑓 
,

here 𝑆 represents the mean number of stimuli presented per stimulus

requency, and 𝑆 𝑓 represents the total number of stimuli presented of

requency 𝑓 . The corrected z-score activation amplitudes correspond-

ng to each stimulus within the reverse correlation time-windows were

hen summated to generate the final matrix representing the average

timulus-triggered activation amplitude: 

𝑇 𝑅𝐹 ( 𝑓, 𝑡 ) = 

1 
𝑛 

𝑛 ∑

𝑖 =1 

[
𝐶 ( 𝑓 ) ⋅𝑍 𝑖 ( 𝑓, 𝑡 ) 

]

The final STRF was smoothed using a gaussian-weighted moving av-

rage with a window size of 4 × 4. The M100 response was then de-
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ned as the highest spike within a latency window of 80 to 120 ms.

he STRF’s best frequency was defined as the frequency that elicited

he maximal amplitude of activation at a latency corresponding to the

100 response. The best frequency was z-score transformed using the

egment of the STRF from − 500 to − 350 ms for the purpose of deter-

ining which STRF showed a significant M100 response (see Results,

election of IIPT-Responsive Sources ). 

The STRF was finally fitted to a 2D-gaussian surface, aligned on the

eak corresponding to the M100 response, in order to smooth the data

or estimation of bandwidth and best temporal modulation rate. To nor-

alize its value according to the overall amplitude, the bandwidth was

efined as the full spectral width at half maximum of the gaussian-fit

nd represents the range of frequencies that can elicit an M100 response.

he best temporal modulation rate was calculated as 𝑅 = ( 2 𝑊 ) −1 , where

 represents the temporal width of the gaussian-fit. The best temporal

odulation rate represents a source’s preference for a stimulus with a

articular temporal modulation. 

Only sources with best frequencies ranging from 0.119 kHz to

8.102 kHz were included in the subsequent analysis (total of 30/32

requencies). The frequency extremes were eliminated to eliminate the

dge-effect caused by smoothing the STRFs. 

The Brainstorm process used to generate STRFs and map the STRF

eatures onto a cortex surface is available under an open source

SD license at the following GitHub repository: https://github.com/

euroSensoryBiomarkingLab/MEGACmapping . 

. Results 

.1. Estimation of STRFs 

For this analysis, we recorded the neural responses to a 10-minute

IPT stimulus train non-invasively in ten participants (labeled S1 to S10)

sing a 275-channel whole-head MEG system (CTF MEG International

ervices Ltd.). MEG records magnetic fields outside the head, and a re-

erse problem must be solved to localize the source of the magnetic

elds from where they originate inside the brain as electrical currents

roduced by neuronal activity. To do so, we used Weighted Minimum

orm Estimates (wMNE) ( Lin et al., 2006 ), which constrains each source

o a one-dimensional perpendicular orientation with respect to a cortex

urface obtained through an MRI-based cortical reconstruction gener-

ted with FreeSurfer ( Dale and Sereno, 1993 ). Our analysis was con-

ucted on a high cortical tessellation (150,000 sources) to maximize

he potential for high spatial resolution. 

We generated STRFs for each source within our region of inter-

st (ROI) in the right and left hemispheres of ten participants (S1 to

10) using a technique based on reverse correlation analysis adapted

o MEG data and detailed in Materials and Methods . The STRF repre-

ents the average stimulus-triggered activation amplitude (the average

-score value of every significant neuronal activation event). The result-

ng STRFs clearly display several important spectrotemporal character-

stics expected of neurons in the AC ( Fig. 3 ). These include temporal

eatures such as best temporal modulation rate and response latency,

s well as spectral features such as best frequency and frequency band-

idth. The STRFs provide information about the auditory stimuli most

ikely to elicit a significant response from a given source. While the ma-

ority of STRFs had a single peak at a latency of about 100 ms (repre-

enting the M100 response), we could identify a number of sources that

xhibited a smaller peak at a latency of 50 ms (representing the earlier

50 response). Some sources exhibited complex STRF spectrotemporal

atterns, including some with frequency sweeps. 

Key properties that can be obtained through analysis of STRFs are

hown in Fig. 4 . These histograms represent a group-level average

mong all participants. Best frequencies were represented along a bi-

odal distribution with one peak at 0.283 kHz and another at 0.8 kHz.

owever, the range was large, extending throughout all presented fre-

uencies. On average, 90% of sources per participant had a best fre-
5 
uency between 0.2 and 3.2 kHz. Frequency bandwidths were most

ommonly 2.5 octaves, with the remainder of sources exhibiting a large

ange of bandwidth. M100 latency was most commonly at 110 ms. Fi-

ally, best temporal modulation rates also followed a bimodal distribu-

ion, with one peak at 15 Hz (with rates ranging from 10 to 24 Hz), and

nother centered around 33 Hz (with rates ranging from 25 to 100 Hz).

hese key properties were extracted from only the right hemisphere, as

he identification of tonotopic gradients was more robust in the right

erebral hemisphere of participants (See also Section IV - Investigation

f lateralization to IIPT stimuli). 

.2. Selection of IIPT-responsive sources 

We defined IIPT-responsive sources as those having an STRF M100

esponse peak greater than a z-score of 3.5, with a latency between 80

nd 120 ms, and a minimum STRF bandwidth of 0.375 octaves (see Ma-

erials and Methods for precise definitions). The high z-score threshold

nables the selection of only those sources that are very IIPT-responsive.

his threshold is determined based on the amount of smoothing that is

sed in the STRF-generation and the signal-to-noise ratio of an experi-

ent. The latency thresholds enable the identification of the M100 re-

ponse with a range of response latencies. Finally, the bandwidth thresh-

ld enables the selection of physiologically plausible receptive fields,

liminating sources that could have a significant “single-bin ” receptive

eld due to chance alone, given the high number of data bins present in

he STRF. 

.3. Identification of a tonotopic gradient 

To demonstrate the utility of computing STRFs in MEG to study

he spatial topographic organization of the auditory cortex, we gener-

ted tonotopic maps from the best frequency values of the STRFs for

ach IIPT-responsive neuronal source. A tonotopic organization could

e identified in the right temporal lobe for all participants, as shown

n Fig. 5 . Because of variability between participants in the position

f tonotopic gradient reversals and in the underlying cortical anatomy

hich covers only a very small area, we do not show a group-level aver-

ge using currently available tools in the Brainstorm suite, as this leads

o loss of valuable gradient information. The gradient pattern is best

nalyzed individually or, alternatively, using a manual landmark-based

veraging method which has proven successful in some fMRI studies

e.g. Humphries et al., 2010 ). 

For the majority of participants (S1 to S8), a primary tonotopic gra-

ient perpendicular to the longitudinal axis of HG could be identified.

his primary gradient is most often centered on the posterior part of HG.

mong the two participants who did not have a perpendicular gradient

rogression, S9 had a simple antero-posterior gradient oriented parallel

o the longitudinal axis of HG, and S7 had several circular zones of low

nd high frequencies with a complex organization not observed in other

articipants. Of note, all participants had a single HG, while S7 had a

omplete duplication of HG, and S8 had a partial duplication of HG.

here was a more variable tonotopic organization present in planum

emporale (PT), usually with a relative overrepresentation of low fre-

uencies. 

Other characteristics of STRFs can be projected onto the cortical

urface, including bandwidth, latency, and temporal modulation. The

ight-hemisphere maps for these characteristics are presented in Figure

1, S2, and S3. The map stability across time was investigated by com-

aring best frequency maps in two participants taken 11 days apart.

ertex-wise correlation analyses showed strong map reliability, as evi-

enced by high determination coefficients (R2) of 0.741 and 0.506 (see

lso Figure S5). 

https://github.com/NeuroSensoryBiomarkingLab/MEGACmapping
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Fig. 3. Variety of STRF characteristics. Sam- 

ple STRFs exhibiting a range of spectral and 

temporal characteristics. (A) M50 response 

(top = strong response; bottom = no response). 

(B) Best temporal modulation rate (top = low 

modulation rate; bottom = high modulation 

rate). (C) Temporal complexity (top = prefer- 

ence for a temporally isolated stimulus; bot- 

tom = preference for a downward frequency 

sweep). (D) Best frequency (top = low fre- 

quency; bottom = high frequency). (E) Fre- 

quency bandwidth (top = small bandwidth; 

bottom = large bandwidth). (F) Spectral com- 

plexity (top = two spectral peaks eliciting an 

M100 response; bottom = two spectral peaks 

eliciting an M100 and/or an M50 response). 
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.4. Investigation of lateralization to IIPT stimuli 

Identification of tonotopic gradients was more robust in the right

erebral hemisphere of participants, which is why the remainder of our

nalysis was performed on the right. Best frequency maps for the left

emisphere are shown in Figure S4. 

The left hemisphere’s tonotopic maps had a decreased signal-to-noise

atio, a shorter range of best frequencies, and less elaborate tonotopic

radients with some participants having no discernible gradient. To in-

estigate whether this was associated with a difference in the number of

IPT-responsive sources in each hemisphere, we calculated the percent-

ge of IIPT-responsive sources within each hemisphere’s ROI ( Fig. 6 ).

hile there were over 50% of IIPT-responsive sources in the left hemi-

phere’s ROI, a two-tailed paired t -test revealed that the right hemi-

phere had 24.3% more IIPT-responsive sources than the left hemisphere

95% CI: 14.8 - 33.8; p = 0.0003), confirming a lateralization to the

ight. 

. Discussion 

We have described a novel method for functional mapping of the

uman AC using MEG, showing that it can reliably extract important
6 
nformation about the spatial organization of auditory processing when

sing STRFs generated from a dense pure tone auditory stimulus. 

.1. Estimation of STRFs using MEG 

MEG has been used in the past to successfully generate physiologi-

ally plausible STRFs using discrete ( Constantino et al., 2017 ) and con-

inuous stimuli ( Crosse et al., 2016 ; Ding and Simon, 2012 ), but to the

est of our knowledge, this is the first in vivo MEG study to estimate

TRFs using reverse correlation in human participants for the purpose

f mapping the functional organization of the AC. Our findings support

hat it is possible to generate physiologically plausible STRFs with excel-

ent variety in terms of spectrotemporal patterns, akin to what has been

eported in other mammalian studies (see for e.g.: Elhilali et al., 2007 ;

assoudi et al., 2015 ). Some STRFs exhibited complex spectrotempo-

al patterns, which is a testament to the high temporal resolution and

ufficient spatial resolution of MEG for isolating a variety of neuronal

ub-populations in a relatively small cortical region. In some cases, we

ould even detect a strong M50 response. 

Our analysis of the distribution of these STRF properties revealed

 bimodal distribution of best frequency centered on 0.283 kHz and

.8 kHz, with the vast majority of sources (90%) having a best fre-
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Fig. 4. Histograms of STRF characteris- 

tics. Histograms showing the total number of 

sources from all 10 participants for each of the 

following STRF characteristics: best frequency 

(A), bandwidth (B), latency (C), and best tem- 

poral modulation rate (D). Lines representing 

the individual contribution of each participant 

are superimposed onto the histograms. 

Fig. 5. Best frequency maps and tonotopic 

gradient organization. Best frequency maps 

are shown for participants 1 to 10. Major re- 

gions of high and low frequencies are marked 

as H and L, respectively, and Heschl’s gyrus is 

outlined for reference. Tonotopic gradients can 

be identified in all participants. Colormap lim- 

its are set near the local minima and maxima of 

each participant to best visualize gradient pat- 

terns. 

7 
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Fig. 6. Average percentage of IIPT-responsive sources for each cere- 

bral hemisphere among all participants. The average percentage of IIPT- 

responsive sources is presented for the right and left hemispheres. The percent- 

age represents the number of IIPT-responsive sources over all possible sources 

within our region of interest. The error bars represent the standard error to the 

mean. Two-tailed paired t -test results in p = 0.0003, t-value − 5.7887, DF = 9. 
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uency between 0.2 kHz and 3.2 kHz. Our results are comparable

ith those of a small study of four epilepsy patients with intracranial

lectrode recordings, where only the frequencies 0.32–3.2 kHz elicited

euronal responses, and 0.25–2.0 kHz elicited the strongest responses

 Bitterman et al., 2008 ). This finding likely reflects emphasis on fre-

uencies used in speech sounds. In an articulation test (intelligibility

f speech communication), participants scored 95% accuracy when a

ow-pass filter of 4.0 kHz was applied to speech sounds and 100% when

he low-pass filter was 7.0 kHz ( Monson et al., 2014 ), suggesting that

pectral content below 7.0 KHz is the most important for speech com-

rehension. The wider audible frequency range in humans extends up

o about 20 kHz for young healthy individuals ( Monson et al., 2014 ),

nd while these were represented in our dataset, they were markedly

nderemphasized when compared to the frequency band of speech. The

-A-RTONE 3A earphones are a potential confounder, given that its fre-

uency responses, although audible, progressively decrease in intensity

eyond 3 kHz. While this could contribute to the underrepresentation of

igher frequencies in our dataset, the fact that frequency representation

egins dropping well below 3 kHz (starting at 0.8 kHz) suggests that the

nderrepresentation is truly representative of the underlying functional

rganization. 

The ability to extract STRFs using MEG is significant. The STRFs we

roduced are in keeping with what is physiologically expected of neu-

ons in the human AC, and their characteristics are likely important

n understanding the subdivisions of neuronal populations in humans.

TRF analyses have also been crucial to better understand the mecha-

isms underlying plasticity. In mice, STRFs have provided an excellent

eans of visualizing the changes in spectrotemporal characteristics of

euronal response over time ( Kamal et al., 2013 ). Until now, correlating

TRFs with spatial organization in the auditory cortex was only possible

n animal studies and intracranial recording studies in humans, but our

roposed methodology provides a novel non-invasive method to do so

n humans. 

.2. MEG-generated tonotopic maps 

A mirror-symmetric tonotopic gradient has been described in

ost fMRI studies ( Da Costa et al., 2011 ; Formisano et al., 2003 ;

umphries et al., 2010 ; Langers and van Dijk, 2012 ; Moerel et al., 2012 ),
8 
nd the majority of our participants exhibit a very similar gradient pat-

ern, usually centered around a region of low frequency in the posterior

art of HG. The directionality of the gradient found using our method

s most closely aligned with the findings of Humphries et al. (2010) ,

a Costa et al . (2011 ), Formisano et al. (2003) , Moerel et al. (2012) ,

ho also describe a primary gradient perpendicular to the longitudi-

al axis of HG (though Langers and van Dijk (2012) in contrast de-

cribe a latero-medial progression) . Furthermore, a review of fMRI and

yto- and myeloarchitectural studies proposed a model of the human

C with a tonotopic gradient oriented at a similar angle with respect to

G ( Moerel et al., 2014 ). Therefore, the similarities between the tono-

opic organization we describe and that found in the fMRI literature sup-

orts the accuracy of our technique. It also adds to the body of evidence

ointing to a primary gradient centered on HG that is perpendicularly

riented to the longitudinal axis of HG, likely representing the primary

C. 

The IIPT stimulus has notable advantages over more standard

nd sparser presentation rates used in fMRI and MEG literature

 Lütkenhöner et al., 2003 ; Cha et al., 2016 ). Because of its temporally

ense nature, it allows for the presentation of a significantly larger

mount of pure tones in a short time frame, which in turn allows for

 larger number of different frequencies to be presented, enabling the

roduction of a more finely graduated tonotopic map. For example, a

ypical auditory cortex mapping study will use 8 different frequencies

nd require 30 min of tone presentations ( Cha et al., 2016 ). In con-

rast, the IIPT can fit up to 32 different frequencies presented within a

0-minute sequence. As a result, we believe that the IIPT stimulus con-

ributes to map quality by achieving a greater spectral resolution than

ther methods within a given data acquisition time frame. 

This supports the hypothesis that the spatial resolution of MEG is

ufficient to study tonotopic gradients in the human AC, and allows us

o leverage MEG’s excellent temporal resolution to study short-latency-

ependent events and complex spectrotemporal characteristics inher-

nt in auditory processing that are impossible to study using fMRI. The

ethod of choice to investigate the spatial organization of the auditory

ortex has more often than not been fMRI ( Su et al., 2014 ). Prior EEG

nd MEG studies investigating this topic generally used a limited tone

iversity or didn’t capture the sources’ characteristics beyond the pre-

erred frequency ( Romani et al., 1982 ; Pantev et al., 1996 ; Cansino et al.,

003 ). Although more recent studies have investigated the temporal re-

ponses by also representing STRFs via specialized algorithms such as

oost and spatiotemporal searchlight representational similarity analy-

is, they have generally focused on speech-related stimuli and/or do not

ttempt to map information extracted from the STRF back on the cortex

o study tonotopy ( David et al., 2007 ; Su et al., 2014 ; Constantino et al.,

017 ). A significant advantage of our current method is that the short

IPT train enables a finer stimulus spectral resolution combined with an

ncreased number of repetitions for each presented frequency, thus pro-

ucing finer and more robust tonotopic maps. Furthermore, the use of

TRFs further reduces the stimulus presentations required for other re-

eptive field representations such as the tuning curve. To achieve similar

esults with other source analysis methods, data acquisition time would

eed to be significantly increased. 

One drawback of this method is that data analysis is computationally

xpensive, due to the need to compute an STRF for every vertex in the

OI. 

There was significant inter-participant variability in our dataset,

hich is consistent with the findings of methods boasting greater spatial

esolution such as fMRI ( Humphries et al., 2010 ). Nonetheless, we could

till identify consistent tonotopic gradient progressions that shared simi-

ar patterns and directionality among the majority of participants. These

atterns extend from the core auditory cortex to the putative location

f the belt and parabelt areas. These other subfields have already been

haracterized based on tonotopy ( Moerel et al., 2012 ), but the technique

resented here has the spatial resolution that would allow further tem-
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oral characterization of these subfields by harnessing the MEG’s high

emporal resolution. 

.3. Right-hemispheric lateralization of response to pure tones 

The tonotopic maps produced using our methodology have led us

o identify a right-hemispheric lateralization of the tonotopic organi-

ation in response to IIPTs at M100. Despite there being over 50% of

ources in the left hemisphere that responded to the IIPT stimulus, the

haracterization of a tonotopic organization was less robust than in the

ight hemisphere, with some participants having no discernible gradi-

nt. While functional lateralization of the human AC has been exten-

ively studied with respect to stimuli involving music and speech sounds

 Tervaniemi and Hugdahl, 2003 ), lateralization of tonotopy using pure

one stimuli has received less attention in the literature. In a single fMRI

tudy, the presence of a clearer tonotopic organization was noted in the

ight primary AC compared to the left, although there was significant

nter-participant variability ( Langers et al., 2007 ). Right-sided special-

zation for frequency-specific tuning has also been noted in intracra-

ial recordings of auditory evoked potentials ( Liégeois-Chauvel et al.,

001 ) and in a previous study using MEG ( Ozaki and Hashimoto, 2007 ).

here is also evidence pointing to left-ear advantage (and therefore right

emispheric lateralization) when human participants are presented with

onal, but not noise stimuli ( Sininger and Bhatara, 2012 ). 

The bulk of the evidence on pitch and music points to the right hemi-

phere having better spectral resolution ( Zatorre et al., 2002 ), and there-

ore implicating it more in music, pitch and tonal processing. This con-

rasts with the left hemisphere’s better temporal resolution, rendering it

ore important in the processing of much faster temporal variations in

he sound amplitude envelope, as is the case in speech. These hypothe-

es are supported by lesioning studies showing that lesions affecting the

ight HG result in deficits in the perception of pitch, by electrophysio-

ogical studies showing an association between pitch perception and the

iming of cortical activity in the right hemisphere, and by a variety of

unctional imaging studies showing a predilection for tonal processing

n the right hemisphere ( Zatorre et al., 1994 , 1992 ; Perry et al., 1999 ;

alpern and Zatorre, 1999 ; Griffiths et al., 1999 ; Penhune et al., 1998 ;

ugdahl et al., 1999 ; Tervaniemi et al., 2000 ). 

Several fMRI studies have identified a tonotopic organization in the

eft hemisphere (see for e.g. Formisano et al., 2003 ; Talavage et al.,

004 ; Langers et al., 2007 ). While we could identify a tonotopic organi-

ation in a subset of participants’ left hemispheres, this was less robust

han on the right. This discrepancy could be due to at least two reasons.

irst, it is possible that the type of stimulus could be implicated. We

sed a spectrotemporally dense pure tone stimulus with a much higher

resentation rate than is typically used in fMRI studies. However, be-

ause the left hemisphere is thought to be important in the processing

f temporal characteristics of sound ( Zatorre et al., 2002 ), it would be

ifficult to explain why such a difference in the stimulus presentation

ate could result in a lateralization to the right hemisphere. Second, the

iscrepancy could be related to the timing of acquisition and the tem-

oral resolution of the two modalities. With MEG, the high temporal

esolution allows us to isolate specific auditory cortical responses such

s the M100 response, whereas the BOLD response used in fMRI re-

ults from neuronal activity occurring over a much longer time period,

ictated by hemodynamic properties. Therefore, the activity captured

hrough fMRI may relate to activity taking place much later than the

100 response in the auditory processing hierarchy. We believe this to

e the more likely explanation behind this observation. 

.4. Limitations 

There are limitations to the method we propose. First, the sound

ntensity (volume) of stimulus presentation is a limiting factor in the

bility to resolve a tonotopic gradient. In order to truly capture the char-

cteristic (best) frequency of a neuron, the lowest sound intensity that
9 
ill elicit a response must be found; however, current electrophysiolog-

cal and functional neuroimaging techniques are not sensitive enough

o record neuronal responses barely above threshold, and therefore re-

uire the use of higher sound intensities. Coupled with the notion that

eurons respond to a broader range of frequencies when stimulated by

igher sound intensities ( Recanzone, 2000 ), doing so may result in the

pread of activation limiting the accuracy and resolvability of the mea-

ured tonotopic gradient ( Tanji et al., 2010 ). While this limitation can-

ot be avoided, we used A-weighted stimulus intensity to compensate

or the differences in volume necessary to lead to equivalent intensity

erception at each frequency ( Fletcher and Munson, 1933 ). 

There are possible artifacts related to recording auditory evoked

elds in the region of the AC. MEG is selectively sensitive to current

long the walls of sulci, and cannot detect current at the crest of gyri

nd bottom of sulci ( Puce and Hämäläinen, 2017 ). Moreover, the activ-

ty recorded from regions lying in close proximity to other surfaces, as

s the case with the AC, could potentially be altered or even canceled

y conflicting currents occurring simultaneously on the adjacent surface

 Ahlfors et al., 2010 ). In our dataset, we did not observe any deficiency

n the identification of IIPT-responsive sources in the crests of gyri and

ottom of sulci. This leads us to believe that any potential alteration in

ignal occurring as a consequence of the macroanatomy of the AC did

ot prevent adequate source estimation with MEG. 

Although our analysis is based on the earliest consistently detectable

esponse in MEG ( Pantev et al., 1988 ), the M100 response, what it

epresents remains controversial. Intracranial recordings have localized

100 to the lateral portion of HG and PT ( Godey et al., 2001 ; Liégeois-

hauvel et al., 1994 ), while non-invasive recordings have localized it

xclusively to PT ( Lütkenhöner and Steinsträter, 1998 ; Engelien et al.,

000 ), which may be interpreted as activity originating from secondary

Cs. This evidence rightfully has led some to question the claim that

100 originates from the primary AC ( Moerel et al., 2014 ). However,

ur data is not entirely consistent with this view. We show that there is

lear activity at M100 along the purported anatomical location of the

rimary AC, HG. There are two possible ways to reconcile these differ-

nces. It may be that the spatial resolution of MEG is such that activity in

patially separated cortical areas appears to be overlapping. In this case,

ost of the observed activity could be originating from PT but falsely

ppear to be extending beyond PT into HG. We believe this is unlikely,

articularly given that tonotopic gradients were identified as progress-

ng in shorter distance increments than the distance between PT and HG.

nother possibility is that primary and secondary auditory processing

re overlapping in some regions of the AC. If this were the case, it would

ndicate that HG is both involved in primary and secondary process-

ng. There is evidence showing that the earlier 50 ms-latency response

M50) is in fact located within the same anatomical region as the M100

esponse ( Wang et al., 2014 ), which could support this hypothesis. Even

f M100 represents higher order processing, we assume, as others have

 Su et al., 2014 ), that the tonotopic organization of auditory processing

hould in theory remain stable over at least several hundred millisec-

nds. Even if it does not, investigation of the M100 response using MEG

emains valuable, as insights into later auditory processing steps can be

ained from studying responses in secondary ACs. 

.5. Conclusions 

Here, we show that MEG can be used to characterize the tonotopic

rganization of the AC by generating STRFs with a spectrotemporally

ense pure tone stimulus. We described a large variety of STRF pat-

erns consistent with the expected variety of neuronal subtypes that can

e further studied both spectrally, through measures such as frequency

andwidth, and temporally, through measures such as best temporal

odulation rate, and latency. The best frequency maps and tonotopic

radients we were able to generate shared strong similarities with those

bserved in other fMRI studies. MEG therefore is able to provide suffi-

ient spatial resolution to study the spatial functional organization of the
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uman AC, including the microarchitecture of auditory subfields, while

roviding additional benefits through its high temporal resolution. Our

roposed method has significant implications for the field of auditory

rocessing, as it is the first to effectively capture both high spatial reso-

ution and spectrotemporal information, which together provide a more

omplete understanding of auditory processing in humans. 
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